We introduce and study a class of random walks defined on the integer lattice -a discrete space and time counterpart of the symmetric α-stable process in . When 0 < α <2 any coordinate axis in , d ≥ 3, is a non-massive set whereas any cone is massive. We provide a necessary and sufficient condition for a thorn to be a massive set.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7,
author = {Alexander Bendikov and Wojciech Cygan},
title = {$\alpha$-stable random walk has massive thorns},
journal = {Colloquium Mathematicae},
volume = {139},
year = {2015},
pages = {105-129},
zbl = {1329.60114},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7}
}
Alexander Bendikov; Wojciech Cygan. α-stable random walk has massive thorns. Colloquium Mathematicae, Tome 139 (2015) pp. 105-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7/