We introduce and study a class of random walks defined on the integer lattice -a discrete space and time counterpart of the symmetric α-stable process in . When 0 < α <2 any coordinate axis in , d ≥ 3, is a non-massive set whereas any cone is massive. We provide a necessary and sufficient condition for a thorn to be a massive set.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7, author = {Alexander Bendikov and Wojciech Cygan}, title = {$\alpha$-stable random walk has massive thorns}, journal = {Colloquium Mathematicae}, volume = {139}, year = {2015}, pages = {105-129}, zbl = {1329.60114}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7} }
Alexander Bendikov; Wojciech Cygan. α-stable random walk has massive thorns. Colloquium Mathematicae, Tome 139 (2015) pp. 105-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-1-7/