It is proved that if G is a locally (soluble-by-finite) group of infinite rank in which every proper subgroup of infinite rank contains an abelian subgroup of finite index, then all proper subgroups of G are abelian-by-finite.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-2, author = {Francesco de Giovanni and Federica Saccomanno}, title = {A note on groups of infinite rank whose proper subgroups are abelian-by-finite}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {165-170}, zbl = {1329.20041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-2} }
Francesco de Giovanni; Federica Saccomanno. A note on groups of infinite rank whose proper subgroups are abelian-by-finite. Colloquium Mathematicae, Tome 135 (2014) pp. 165-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-2-2/