Linear extensions of orders invariant under abelian group actions
Alexander R. Pruss
Colloquium Mathematicae, Tome 135 (2014), p. 117-125 / Harvested from The Polish Digital Mathematics Library

Let G be an abelian group acting on a set X, and suppose that no element of G has any finite orbit of size greater than one. We show that every partial order on X invariant under G extends to a linear order on X also invariant under G. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set X, there is a linear preorder ≤ on the powerset 𝓟X invariant under G and such that if A is a proper subset of B, then A < B (i.e., A ≤ B but not B ≤ A).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283800
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-8,
     author = {Alexander R. Pruss},
     title = {Linear extensions of orders invariant under abelian group actions},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {117-125},
     zbl = {1321.06001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-8}
}
Alexander R. Pruss. Linear extensions of orders invariant under abelian group actions. Colloquium Mathematicae, Tome 135 (2014) pp. 117-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-8/