We consider a nonlocal convection-diffusion equation , where J is a probability density. We supplement this equation with step-like initial conditions and prove the convergence of the corresponding solutions towards a rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid Burgers equation.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3, author = {Anna Pude\l ko}, title = {Rarefaction waves in nonlocal convection-diffusion equations}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {27-42}, zbl = {1311.35033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3} }
Anna Pudełko. Rarefaction waves in nonlocal convection-diffusion equations. Colloquium Mathematicae, Tome 135 (2014) pp. 27-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3/