Rarefaction waves in nonlocal convection-diffusion equations
Anna Pudełko
Colloquium Mathematicae, Tome 135 (2014), p. 27-42 / Harvested from The Polish Digital Mathematics Library

We consider a nonlocal convection-diffusion equation ut=J*u-u-uux, where J is a probability density. We supplement this equation with step-like initial conditions and prove the convergence of the corresponding solutions towards a rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid Burgers equation.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283466
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3,
     author = {Anna Pude\l ko},
     title = {Rarefaction waves in nonlocal convection-diffusion equations},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {27-42},
     zbl = {1311.35033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3}
}
Anna Pudełko. Rarefaction waves in nonlocal convection-diffusion equations. Colloquium Mathematicae, Tome 135 (2014) pp. 27-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm137-1-3/