We prove that every vertex v of a tournament T belongs to at least arc-disjoint cycles, where δ⁺(T) (or δ¯(T)) is the minimum out-degree (resp. minimum in-degree) of T, and (or ) is the out-degree (resp. in-degree) of v.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7, author = {Jan Florek}, title = {A note on arc-disjoint cycles in tournaments}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {259-262}, zbl = {1302.05066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7} }
Jan Florek. A note on arc-disjoint cycles in tournaments. Colloquium Mathematicae, Tome 135 (2014) pp. 259-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7/