A note on arc-disjoint cycles in tournaments
Jan Florek
Colloquium Mathematicae, Tome 135 (2014), p. 259-262 / Harvested from The Polish Digital Mathematics Library

We prove that every vertex v of a tournament T belongs to at least maxminδ(T),2δ(T)-dT(v)+1,minδ¯(T),2δ¯(T)-d¯T(v)+1 arc-disjoint cycles, where δ⁺(T) (or δ¯(T)) is the minimum out-degree (resp. minimum in-degree) of T, and dT(v) (or d¯T(v)) is the out-degree (resp. in-degree) of v.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286214
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7,
     author = {Jan Florek},
     title = {A note on arc-disjoint cycles in tournaments},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {259-262},
     zbl = {1302.05066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7}
}
Jan Florek. A note on arc-disjoint cycles in tournaments. Colloquium Mathematicae, Tome 135 (2014) pp. 259-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-7/