On A² ± nB⁴ + C⁴ = D⁸
Susil Kumar Jena
Colloquium Mathematicae, Tome 135 (2014), p. 255-257 / Harvested from The Polish Digital Mathematics Library

We prove that for each n ∈ ℕ₊ the Diophantine equation A² ± nB⁴ + C⁴ = D⁸ has infinitely many primitive integer solutions, i.e. solutions satisfying gcd(A,B,C,D) = 1.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283527
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6,
     author = {Susil Kumar Jena},
     title = {On A2 +- nB4 + C4 = D8},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {255-257},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6}
}
Susil Kumar Jena. On A² ± nB⁴ + C⁴ = D⁸. Colloquium Mathematicae, Tome 135 (2014) pp. 255-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6/