We prove that for each n ∈ ℕ₊ the Diophantine equation A² ± nB⁴ + C⁴ = D⁸ has infinitely many primitive integer solutions, i.e. solutions satisfying gcd(A,B,C,D) = 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6, author = {Susil Kumar Jena}, title = {On A2 +- nB4 + C4 = D8}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {255-257}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6} }
Susil Kumar Jena. On A² ± nB⁴ + C⁴ = D⁸. Colloquium Mathematicae, Tome 135 (2014) pp. 255-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-6/