Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and N a finitely generated R-module. It is shown that the R-modules are I-cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies that if I has dimension one (i.e., dim R/I = 1) then the R-modules are I-cofinite for all i,j ≥ 0. Also, we prove that if R is local, then the R-modules are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3. Finally, it is shown that the R-modules are I-weakly cofinite for all i,j ≥ 0 whenever dim R/I ≤ 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-4, author = {Reza Naghipour and Kamal Bahmanpour and Imaneh Khalili Gorji}, title = {Cofiniteness of torsion functors of cofinite modules}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {221-230}, zbl = {1306.13012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-4} }
Reza Naghipour; Kamal Bahmanpour; Imaneh Khalili Gorji. Cofiniteness of torsion functors of cofinite modules. Colloquium Mathematicae, Tome 135 (2014) pp. 221-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-4/