On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth
Stanisław Kasjan ; Grzegorz Pastuszak
Colloquium Mathematicae, Tome 135 (2014), p. 179-220 / Harvested from The Polish Digital Mathematics Library

Assume that k is a field of characteristic different from 2. We show that if Γ is a strongly simply connected k-algebra of non-polynomial growth, then there exists a special family of pointed Γ-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that Γ admits a super-decomposable pure-injective module if k is a countable field.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286321
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-3,
     author = {Stanis\l aw Kasjan and Grzegorz Pastuszak},
     title = {On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {179-220},
     zbl = {1322.16009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-3}
}
Stanisław Kasjan; Grzegorz Pastuszak. On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth. Colloquium Mathematicae, Tome 135 (2014) pp. 179-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-3/