Haar wavelets on the Lebesgue spaces of local fields of positive characteristic
Biswaranjan Behera
Colloquium Mathematicae, Tome 135 (2014), p. 149-168 / Harvested from The Polish Digital Mathematics Library

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for Lp(K), 1 < p < ∞. We also prove that this system, normalized in Lp(K), is a democratic basis of Lp(K). This also proves that the Haar system is a greedy basis of Lp(K) for 1 < p < ∞.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283665
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1,
     author = {Biswaranjan Behera},
     title = {Haar wavelets on the Lebesgue spaces of local fields of positive characteristic},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {149-168},
     zbl = {1304.42083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1}
}
Biswaranjan Behera. Haar wavelets on the Lebesgue spaces of local fields of positive characteristic. Colloquium Mathematicae, Tome 135 (2014) pp. 149-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1/