We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for , 1 < p < ∞. We also prove that this system, normalized in , is a democratic basis of . This also proves that the Haar system is a greedy basis of for 1 < p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1,
author = {Biswaranjan Behera},
title = {Haar wavelets on the Lebesgue spaces of local fields of positive characteristic},
journal = {Colloquium Mathematicae},
volume = {135},
year = {2014},
pages = {149-168},
zbl = {1304.42083},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1}
}
Biswaranjan Behera. Haar wavelets on the Lebesgue spaces of local fields of positive characteristic. Colloquium Mathematicae, Tome 135 (2014) pp. 149-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1/