We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for , 1 < p < ∞. We also prove that this system, normalized in , is a democratic basis of . This also proves that the Haar system is a greedy basis of for 1 < p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1, author = {Biswaranjan Behera}, title = {Haar wavelets on the Lebesgue spaces of local fields of positive characteristic}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {149-168}, zbl = {1304.42083}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1} }
Biswaranjan Behera. Haar wavelets on the Lebesgue spaces of local fields of positive characteristic. Colloquium Mathematicae, Tome 135 (2014) pp. 149-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-2-1/