A ring Λ satisfies the Generalized Auslander-Reiten Condition ( ) if for each Λ-module M with for all i > n the projective dimension of M is at most n. We prove that this condition is satisfied by all n-symmetric algebras of quasitilted type.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9, author = {Maciej Karpicz and Marju Purin}, title = {The vanishing of self-extensions over n-symmetric algebras of quasitilted type}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {99-108}, zbl = {1303.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9} }
Maciej Karpicz; Marju Purin. The vanishing of self-extensions over n-symmetric algebras of quasitilted type. Colloquium Mathematicae, Tome 135 (2014) pp. 99-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9/