The vanishing of self-extensions over n-symmetric algebras of quasitilted type
Maciej Karpicz ; Marju Purin
Colloquium Mathematicae, Tome 135 (2014), p. 99-108 / Harvested from The Polish Digital Mathematics Library

A ring Λ satisfies the Generalized Auslander-Reiten Condition ( ) if for each Λ-module M with Exti(M,MΛ)=0 for all i > n the projective dimension of M is at most n. We prove that this condition is satisfied by all n-symmetric algebras of quasitilted type.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283660
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9,
     author = {Maciej Karpicz and Marju Purin},
     title = {The vanishing of self-extensions over n-symmetric algebras of quasitilted type},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {99-108},
     zbl = {1303.16012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9}
}
Maciej Karpicz; Marju Purin. The vanishing of self-extensions over n-symmetric algebras of quasitilted type. Colloquium Mathematicae, Tome 135 (2014) pp. 99-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-9/