We prove a uniform version of the converse Taylor theorem in infinite-dimensional spaces with an explicit relation between the moduli of continuity for mappings on a general open domain. We show that if the domain is convex and bounded, then we can extend the estimate up to the boundary.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6, author = {Michal Johanis}, title = {A quantitative version of the converse Taylor theorem: $C^{k,$\omega$}$-smoothness}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {57-64}, zbl = {1309.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6} }
Michal Johanis. A quantitative version of the converse Taylor theorem: $C^{k,ω}$-smoothness. Colloquium Mathematicae, Tome 135 (2014) pp. 57-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6/