We prove a uniform version of the converse Taylor theorem in infinite-dimensional spaces with an explicit relation between the moduli of continuity for mappings on a general open domain. We show that if the domain is convex and bounded, then we can extend the estimate up to the boundary.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6,
author = {Michal Johanis},
title = {A quantitative version of the converse Taylor theorem: $C^{k,$\omega$}$-smoothness},
journal = {Colloquium Mathematicae},
volume = {135},
year = {2014},
pages = {57-64},
zbl = {1309.46023},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6}
}
Michal Johanis. A quantitative version of the converse Taylor theorem: $C^{k,ω}$-smoothness. Colloquium Mathematicae, Tome 135 (2014) pp. 57-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-6/