A characterization of sequences with the minimum number of k-sums modulo k
Xingwu Xia ; Yongke Qu ; Guoyou Qian
Colloquium Mathematicae, Tome 135 (2014), p. 51-56 / Harvested from The Polish Digital Mathematics Library

Let G be an additive abelian group of order k, and S be a sequence over G of length k+r, where 1 ≤ r ≤ k-1. We call the sum of k terms of S a k-sum. We show that if 0 is not a k-sum, then the number of k-sums is at least r+2 except for S containing only two distinct elements, in which case the number of k-sums equals r+1. This result improves the Bollobás-Leader theorem, which states that there are at least r+1 k-sums if 0 is not a k-sum.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:284237
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-5,
     author = {Xingwu Xia and Yongke Qu and Guoyou Qian},
     title = {A characterization of sequences with the minimum number of k-sums modulo k},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {51-56},
     zbl = {1301.11011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-5}
}
Xingwu Xia; Yongke Qu; Guoyou Qian. A characterization of sequences with the minimum number of k-sums modulo k. Colloquium Mathematicae, Tome 135 (2014) pp. 51-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-5/