Suppose that N is an odd perfect number and is a prime power with . Define the index . We prove that m cannot take the form , where u is a positive integer and 2u+1 is composite. We also prove that, if q is the Euler prime, then m cannot take any of the 30 forms q₁, q₁², q₁³, q₁⁴, q₁⁵, q₁⁶, q₁⁷, q₁⁸, q₁q₂, q₁²q₂, q₁³q₂, q₁⁴ q₂, q₁⁵q₂, q₁²q₂², q₁³q₂², q₁⁴q₂², q₁q₂q₃, q₁²q₂q₃, q₁³q₂q₃, q₁⁴q₂q₃, q₁²q₂²q₃, q₁²q₂²q₃², q₁q₂q₃q₄, q₁²q₂q₃q₄, q₁³q₂q₃q₄, q₁²q₂²q₃q₄, q₁q₂q₃q₄q₅, q₁²q₂q₃q₄q₅, q₁q₂q₃q₄q₅q₆, q₁q₂q₃q₄q₅q₆q₇, where q₁, q₂, q₃, q₄, q₅, q₆, q₇ are distinct odd primes. A similar result is proved if q is not the Euler prime. These extend recent results of Broughan, Delbourgo, and Zhou. We also pose a related problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-4,
author = {Feng-Juan Chen and Yong-Gao Chen},
title = {On the index of an odd perfect number},
journal = {Colloquium Mathematicae},
volume = {135},
year = {2014},
pages = {41-49},
zbl = {1301.11003},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-4}
}
Feng-Juan Chen; Yong-Gao Chen. On the index of an odd perfect number. Colloquium Mathematicae, Tome 135 (2014) pp. 41-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-4/