We investigate the transport equation . Our result improves the classical criteria of uniqueness of weak solutions in the case of irregular coefficients: b ∈ BV, . To obtain our result we use a procedure similar to DiPerna and Lions’s one developed for Sobolev vector fields. We apply renormalization theory for BV vector fields and logarithmic type inequalities to obtain energy estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9, author = {Pawe\l\ Subko}, title = {A remark on the transport equation with b [?] BV and $div\_{x} b [?] BMO$ }, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {113-125}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9} }
Paweł Subko. A remark on the transport equation with b ∈ BV and $div_{x} b ∈ BMO$ . Colloquium Mathematicae, Tome 135 (2014) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9/