A remark on the transport equation with b ∈ BV and divxbBMO
Paweł Subko
Colloquium Mathematicae, Tome 135 (2014), p. 113-125 / Harvested from The Polish Digital Mathematics Library

We investigate the transport equation tu(t,x)+b(t,x)·Dxu(t,x)=0. Our result improves the classical criteria of uniqueness of weak solutions in the case of irregular coefficients: b ∈ BV, divxbBMO. To obtain our result we use a procedure similar to DiPerna and Lions’s one developed for Sobolev vector fields. We apply renormalization theory for BV vector fields and logarithmic type inequalities to obtain energy estimates.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:284145
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9,
     author = {Pawe\l\ Subko},
     title = {A remark on the transport equation with b [?] BV and $div\_{x} b [?] BMO$
            },
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {113-125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9}
}
Paweł Subko. A remark on the transport equation with b ∈ BV and $div_{x} b ∈ BMO$
            . Colloquium Mathematicae, Tome 135 (2014) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-9/