Let Λ = (S/R,α) be a local weak crossed product order in the crossed product algebra A = (L/K,α) with integral cocycle, and the inertial group of α, for S* the group of units of S. We give a condition for the first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L/K.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-4, author = {Th. Theohari-Apostolidi and A. Tompoulidou}, title = {On local weak crossed product orders}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {53-68}, zbl = {1301.16026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-4} }
Th. Theohari-Apostolidi; A. Tompoulidou. On local weak crossed product orders. Colloquium Mathematicae, Tome 135 (2014) pp. 53-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-4/