Potential theory of hyperbolic Brownian motion in tube domains
Grzegorz Serafin
Colloquium Mathematicae, Tome 135 (2014), p. 27-52 / Harvested from The Polish Digital Mathematics Library

Let X = X(t); t ≥ 0 be the hyperbolic Brownian motion on the real hyperbolic space ℍⁿ = x ∈ ℝⁿ:xₙ > 0. We study the Green function and the Poisson kernel of tube domains of the form D × (0,∞)⊂ ℍⁿ, where D is any Lipschitz domain in n-1. We show how to obtain formulas for these functions using analogous objects for the standard Brownian motion in 2n. We give formulas and uniform estimates for the set Da=x:x(0,a). The constants in the estimates depend only on the dimension of the space.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:284374
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-3,
     author = {Grzegorz Serafin},
     title = {Potential theory of hyperbolic Brownian motion in tube domains},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {27-52},
     zbl = {1302.60114},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-3}
}
Grzegorz Serafin. Potential theory of hyperbolic Brownian motion in tube domains. Colloquium Mathematicae, Tome 135 (2014) pp. 27-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-3/