For natural numbers a,b and positive integer n, let R(a,b;n) denote the number of representations of n in the form . Lomadze discovered a formula for R(6,0;n). Explicit formulas for R(1,5;n), R(2,4;n), R(3,3;n), R(4,2;n) and R(5,1;n) are determined in this paper by using the (p;k)-parametrization of theta functions due to Alaca, Alaca and Williams.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11, author = {Ernest X. W. Xia}, title = {On the number of representations of a positive integer by certain quadratic forms}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {139-145}, zbl = {1294.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11} }
Ernest X. W. Xia. On the number of representations of a positive integer by certain quadratic forms. Colloquium Mathematicae, Tome 135 (2014) pp. 139-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11/