On the number of representations of a positive integer by certain quadratic forms
Ernest X. W. Xia
Colloquium Mathematicae, Tome 135 (2014), p. 139-145 / Harvested from The Polish Digital Mathematics Library

For natural numbers a,b and positive integer n, let R(a,b;n) denote the number of representations of n in the form i=1a(x²i+xiyi+y²i)+2j=1b(u²j+ujvj+v²j). Lomadze discovered a formula for R(6,0;n). Explicit formulas for R(1,5;n), R(2,4;n), R(3,3;n), R(4,2;n) and R(5,1;n) are determined in this paper by using the (p;k)-parametrization of theta functions due to Alaca, Alaca and Williams.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283763
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11,
     author = {Ernest X. W. Xia},
     title = {On the number of representations of a positive integer by certain quadratic forms},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {139-145},
     zbl = {1294.11043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11}
}
Ernest X. W. Xia. On the number of representations of a positive integer by certain quadratic forms. Colloquium Mathematicae, Tome 135 (2014) pp. 139-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm135-1-11/