Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew n-derivation has to be commutative.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-8, author = {Ajda Fo\v sner}, title = {Prime and semiprime rings with symmetric skew n-derivations}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {245-253}, zbl = {1304.16045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-8} }
Ajda Fošner. Prime and semiprime rings with symmetric skew n-derivations. Colloquium Mathematicae, Tome 135 (2014) pp. 245-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-8/