By introducing the ℱ-stress energy tensor of maps from an n-dimensional Finsler manifold to a Finsler manifold and assuming that (n-2)ℱ(t)'- 2tℱ(t)'' ≠ 0 for any t ∈ [0,∞), we prove that any conformal strongly ℱ-harmonic map must be homothetic. This assertion generalizes the results by He and Shen for harmonics map and by Ara for the Riemannian case.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-6, author = {Jintang Li}, title = {Conformal F-harmonic maps for Finsler manifolds}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {227-234}, zbl = {1296.53147}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-6} }
Jintang Li. Conformal ℱ-harmonic maps for Finsler manifolds. Colloquium Mathematicae, Tome 135 (2014) pp. 227-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-6/