The almost Daugavet property and translation-invariant subspaces
Simon Lücking
Colloquium Mathematicae, Tome 135 (2014), p. 151-163 / Harvested from The Polish Digital Mathematics Library

Let G be a metrizable, compact abelian group and let Λ be a subset of its dual group Ĝ. We show that CΛ(G) has the almost Daugavet property if and only if Λ is an infinite set, and that L¹Λ(G) has the almost Daugavet property if and only if Λ is not a Λ(1) set.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:284170
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-1,
     author = {Simon L\"ucking},
     title = {The almost Daugavet property and translation-invariant subspaces},
     journal = {Colloquium Mathematicae},
     volume = {135},
     year = {2014},
     pages = {151-163},
     zbl = {1312.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-1}
}
Simon Lücking. The almost Daugavet property and translation-invariant subspaces. Colloquium Mathematicae, Tome 135 (2014) pp. 151-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-2-1/