Let A be a finitely generated associative algebra over an algebraically closed field. We characterize the finite-dimensional A-modules whose orbit closures are local hypersurfaces. The result is reduced to an analogous characterization for orbit closures of quiver representations obtained in Section 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2, author = {Nguyen Quang Loc and Grzegorz Zwara}, title = {Modules and quiver representations whose orbit closures are hypersurfaces}, journal = {Colloquium Mathematicae}, volume = {135}, year = {2014}, pages = {57-74}, zbl = {1297.14007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2} }
Nguyen Quang Loc; Grzegorz Zwara. Modules and quiver representations whose orbit closures are hypersurfaces. Colloquium Mathematicae, Tome 135 (2014) pp. 57-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2/