Let A be a finitely generated associative algebra over an algebraically closed field. We characterize the finite-dimensional A-modules whose orbit closures are local hypersurfaces. The result is reduced to an analogous characterization for orbit closures of quiver representations obtained in Section 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2,
author = {Nguyen Quang Loc and Grzegorz Zwara},
title = {Modules and quiver representations whose orbit closures are hypersurfaces},
journal = {Colloquium Mathematicae},
volume = {135},
year = {2014},
pages = {57-74},
zbl = {1297.14007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2}
}
Nguyen Quang Loc; Grzegorz Zwara. Modules and quiver representations whose orbit closures are hypersurfaces. Colloquium Mathematicae, Tome 135 (2014) pp. 57-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm134-1-2/