On weakly Gibson Fσ-measurable mappings
Olena Karlova ; Volodymyr Mykhaylyuk
Colloquium Mathematicae, Tome 131 (2013), p. 211-219 / Harvested from The Polish Digital Mathematics Library

A function f: X → Y between topological spaces is said to be a weakly Gibson function if f(Ū)f(U)¯ for any open connected set U ⊆ X. We prove that if X is a locally connected hereditarily Baire space and Y is a T₁-space then an Fσ-measurable mapping f: X → Y is weakly Gibson if and only if for any connected set C ⊆ X with dense connected interior the image f(C) is connected. Moreover, we show that each weakly Gibson Fσ-measurable mapping f: ℝⁿ → Y, where Y is a T₁-space, has a connected graph.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284115
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-7,
     author = {Olena Karlova and Volodymyr Mykhaylyuk},
     title = {On weakly Gibson $F\_{$\sigma$}$-measurable mappings},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {211-219},
     zbl = {1285.26024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-7}
}
Olena Karlova; Volodymyr Mykhaylyuk. On weakly Gibson $F_{σ}$-measurable mappings. Colloquium Mathematicae, Tome 131 (2013) pp. 211-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-7/