Properties of extremal sequences for the Bellman function of the dyadic maximal operator
Eleftherios N. Nikolidakis
Colloquium Mathematicae, Tome 131 (2013), p. 273-282 / Harvested from The Polish Digital Mathematics Library

We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak-Lp uniqueness for such a sequence.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284123
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13,
     author = {Eleftherios N. Nikolidakis},
     title = {Properties of extremal sequences for the Bellman function of the dyadic maximal operator},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {273-282},
     zbl = {1284.42061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13}
}
Eleftherios N. Nikolidakis. Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Colloquium Mathematicae, Tome 131 (2013) pp. 273-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13/