We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak- uniqueness for such a sequence.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13, author = {Eleftherios N. Nikolidakis}, title = {Properties of extremal sequences for the Bellman function of the dyadic maximal operator}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {273-282}, zbl = {1284.42061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13} }
Eleftherios N. Nikolidakis. Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Colloquium Mathematicae, Tome 131 (2013) pp. 273-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13/