We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak- uniqueness for such a sequence.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13,
author = {Eleftherios N. Nikolidakis},
title = {Properties of extremal sequences for the Bellman function of the dyadic maximal operator},
journal = {Colloquium Mathematicae},
volume = {131},
year = {2013},
pages = {273-282},
zbl = {1284.42061},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13}
}
Eleftherios N. Nikolidakis. Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Colloquium Mathematicae, Tome 131 (2013) pp. 273-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-2-13/