Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates
Peng Chen
Colloquium Mathematicae, Tome 131 (2013), p. 51-65 / Harvested from The Polish Digital Mathematics Library

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let HLp(X) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on HLp(X) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on HLp(X).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286325
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-4,
     author = {Peng Chen},
     title = {Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {51-65},
     zbl = {1291.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-4}
}
Peng Chen. Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Colloquium Mathematicae, Tome 131 (2013) pp. 51-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-4/