Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2, author = {David J. Platt and Sumaia Saad Eddin}, title = {Explicit upper bounds for |L(1,$\chi$)| when $\chi$(3) = 0}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {23-34}, zbl = {1286.11131}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2} }
David J. Platt; Sumaia Saad Eddin. Explicit upper bounds for |L(1,χ)| when χ(3) = 0. Colloquium Mathematicae, Tome 131 (2013) pp. 23-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2/