Explicit upper bounds for |L(1,χ)| when χ(3) = 0
David J. Platt ; Sumaia Saad Eddin
Colloquium Mathematicae, Tome 131 (2013), p. 23-34 / Harvested from The Polish Digital Mathematics Library

Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286472
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2,
     author = {David J. Platt and Sumaia Saad Eddin},
     title = {Explicit upper bounds for |L(1,$\chi$)| when $\chi$(3) = 0},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {23-34},
     zbl = {1286.11131},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2}
}
David J. Platt; Sumaia Saad Eddin. Explicit upper bounds for |L(1,χ)| when χ(3) = 0. Colloquium Mathematicae, Tome 131 (2013) pp. 23-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm133-1-2/