We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-2-5, author = {Piotr Orli\'nski}, title = {The existence of an exponential attractor in magneto-micropolar fluid flow via the l-trajectories method}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {221-238}, zbl = {1285.35084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-2-5} }
Piotr Orliński. The existence of an exponential attractor in magneto-micropolar fluid flow via the ℓ-trajectories method. Colloquium Mathematicae, Tome 131 (2013) pp. 221-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-2-5/