Lp-Lq estimates for some convolution operators with singular measures on the Heisenberg group
T. Godoy ; P. Rocha
Colloquium Mathematicae, Tome 131 (2013), p. 101-111 / Harvested from The Polish Digital Mathematics Library

We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by ν(E)=χE(w,φ(w))η(w)dw, where φ(w)=j=1naj|wj|², w = (w₁,...,wₙ) ∈ ℂⁿ, aj, and η(w) = η₀(|w|²) with ηCc(). We characterize the set of pairs (p,q) such that the convolution operator with ν is Lp()-Lq() bounded. We also obtain Lp-improving properties of measures supported on the graph of the function φ(w)=|w|2m.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283862
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-8,
     author = {T. Godoy and P. Rocha},
     title = {$L^{p} - L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {101-111},
     zbl = {1277.43013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-8}
}
T. Godoy; P. Rocha. $L^{p} - L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group. Colloquium Mathematicae, Tome 131 (2013) pp. 101-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-8/