The Diophantine equation (bn)x+(2n)y=((b+2)n)z
Min Tang ; Quan-Hui Yang
Colloquium Mathematicae, Tome 131 (2013), p. 95-100 / Harvested from The Polish Digital Mathematics Library

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation bx+2y=(b+2)z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284277
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-7,
     author = {Min Tang and Quan-Hui Yang},
     title = {The Diophantine equation $(bn)^{x} + (2n)^{y} = ((b+2)n)^{z}$
            },
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {95-100},
     zbl = {06212151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-7}
}
Min Tang; Quan-Hui Yang. The Diophantine equation $(bn)^{x} + (2n)^{y} = ((b+2)n)^{z}$
            . Colloquium Mathematicae, Tome 131 (2013) pp. 95-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-7/