On a relation between norms of the maximal function and the square function of a martingale
Masato Kikuchi
Colloquium Mathematicae, Tome 131 (2013), p. 13-26 / Harvested from The Polish Digital Mathematics Library

Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For f=(f)n, let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and ||Mg||X||Mf||X, then ||Sg||XC||Sf||X, where C is a constant independent of f and g.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286638
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-2,
     author = {Masato Kikuchi},
     title = {On a relation between norms of the maximal function and the square function of a martingale},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {13-26},
     zbl = {1281.60042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-2}
}
Masato Kikuchi. On a relation between norms of the maximal function and the square function of a martingale. Colloquium Mathematicae, Tome 131 (2013) pp. 13-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm132-1-2/