Let T be a spherical 2-expansive m-tuple and let denote its spherical Cauchy dual. If is commuting then the inequality holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8, author = {Sameer Chavan}, title = {An inequality for spherical Cauchy dual tuples}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {265-271}, zbl = {1296.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8} }
Sameer Chavan. An inequality for spherical Cauchy dual tuples. Colloquium Mathematicae, Tome 131 (2013) pp. 265-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8/