An inequality for spherical Cauchy dual tuples
Sameer Chavan
Colloquium Mathematicae, Tome 131 (2013), p. 265-271 / Harvested from The Polish Digital Mathematics Library

Let T be a spherical 2-expansive m-tuple and let T denote its spherical Cauchy dual. If T is commuting then the inequality |β|=k(β!)-1(T)β(T)*β(k+m-1k)|β|=k(β!)-1(T)*β(T)β holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283552
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8,
     author = {Sameer Chavan},
     title = {An inequality for spherical Cauchy dual tuples},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {265-271},
     zbl = {1296.47006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8}
}
Sameer Chavan. An inequality for spherical Cauchy dual tuples. Colloquium Mathematicae, Tome 131 (2013) pp. 265-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-8/