On the Hausdorff-Young theorem for commutative hypergroups
Sina Degenfeld-Schonburg
Colloquium Mathematicae, Tome 131 (2013), p. 219-231 / Harvested from The Polish Digital Mathematics Library

We study the Hausdorff-Young transform for a commutative hypergroup K and its dual space K̂ by extending the domain of the Fourier transform so as to encompass all functions in Lp(K,m) and Lp(K̂,π) respectively, where 1 ≤ p ≤ 2. Our main theorem is that those extended transforms are inverse to each other. In contrast to the group case, this is not obvious, since the dual space K̂ is in general not a hypergroup itself.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284027
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-5,
     author = {Sina Degenfeld-Schonburg},
     title = {On the Hausdorff-Young theorem for commutative hypergroups},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {219-231},
     zbl = {1281.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-5}
}
Sina Degenfeld-Schonburg. On the Hausdorff-Young theorem for commutative hypergroups. Colloquium Mathematicae, Tome 131 (2013) pp. 219-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-2-5/