We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by -filters and λ ≤ , then Seq is a -set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8,
author = {Aleksander B\l aszczyk and Anna Brzeska},
title = {$P\_{$\lambda$}$-sets and skeletal mappings},
journal = {Colloquium Mathematicae},
volume = {131},
year = {2013},
pages = {89-98},
zbl = {1280.54021},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8}
}
Aleksander Błaszczyk; Anna Brzeska. $P_{λ}$-sets and skeletal mappings. Colloquium Mathematicae, Tome 131 (2013) pp. 89-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8/