Pλ-sets and skeletal mappings
Aleksander Błaszczyk ; Anna Brzeska
Colloquium Mathematicae, Tome 131 (2013), p. 89-98 / Harvested from The Polish Digital Mathematics Library

We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by Pλ-filters and λ ≤ , then Seq is a Pλ-set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283708
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8,
     author = {Aleksander B\l aszczyk and Anna Brzeska},
     title = {$P\_{$\lambda$}$-sets and skeletal mappings},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {89-98},
     zbl = {1280.54021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8}
}
Aleksander Błaszczyk; Anna Brzeska. $P_{λ}$-sets and skeletal mappings. Colloquium Mathematicae, Tome 131 (2013) pp. 89-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-8/