We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-5, author = {Maciej Gawron}, title = {A note on the Diophantine equation P(z) = n! + m!}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {53-58}, zbl = {06184250}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-5} }
Maciej Gawron. A note on the Diophantine equation P(z) = n! + m!. Colloquium Mathematicae, Tome 131 (2013) pp. 53-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-5/