A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series
Mordechay B. Levin
Colloquium Mathematicae, Tome 131 (2013), p. 13-27 / Harvested from The Polish Digital Mathematics Library

We prove the central limit theorem for the multisequence 1nN1ndNdan,...,ndcos(2πm,An...Adndx) where ms, an,...,nd are reals, A,...,Ad are partially hyperbolic commuting s × s matrices, and x is a uniformly distributed random variable in [0,1]s. The main tool is the S-unit theorem.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284260
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2,
     author = {Mordechay B. Levin},
     title = {A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {13-27},
     zbl = {1279.60040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2}
}
Mordechay B. Levin. A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series. Colloquium Mathematicae, Tome 131 (2013) pp. 13-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2/