We prove the central limit theorem for the multisequence where , are reals, are partially hyperbolic commuting s × s matrices, and x is a uniformly distributed random variable in . The main tool is the S-unit theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2, author = {Mordechay B. Levin}, title = {A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {13-27}, zbl = {1279.60040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2} }
Mordechay B. Levin. A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series. Colloquium Mathematicae, Tome 131 (2013) pp. 13-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm131-1-2/