On the size of L(1,χ) and S. Chowla's hypothesis implying that L(1,χ) > 0 for s > 0 and for real characters χ
S. Louboutin
Colloquium Mathematicae, Tome 131 (2013), p. 79-90 / Harvested from The Polish Digital Mathematics Library

We give explicit constants κ such that if χ is a real non-principal Dirichlet character for which L(1,χ) ≤ κ, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that L(s,χ) > 0 for s > 0. These constants are larger than the previous ones κ = 1- log 2 = 0.306... and κ = 0.367... we obtained elsewhere.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284089
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-8,
     author = {S. Louboutin},
     title = {On the size of L(1,$\chi$) and S. Chowla's hypothesis implying that L(1,$\chi$) > 0 for s > 0 and for real characters $\chi$},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {79-90},
     zbl = {1334.11069},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-8}
}
S. Louboutin. On the size of L(1,χ) and S. Chowla's hypothesis implying that L(1,χ) > 0 for s > 0 and for real characters χ. Colloquium Mathematicae, Tome 131 (2013) pp. 79-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-8/