For k = 1,2,... let denote the harmonic number . In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have , , and for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7, author = {Zhi-Wei Sun and Li-Lu Zhao}, title = {Arithmetic theory of harmonic numbers (II)}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {67-78}, zbl = {1290.11052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7} }
Zhi-Wei Sun; Li-Lu Zhao. Arithmetic theory of harmonic numbers (II). Colloquium Mathematicae, Tome 131 (2013) pp. 67-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7/