Arithmetic theory of harmonic numbers (II)
Zhi-Wei Sun ; Li-Lu Zhao
Colloquium Mathematicae, Tome 131 (2013), p. 67-78 / Harvested from The Polish Digital Mathematics Library

For k = 1,2,... let Hk denote the harmonic number j=1k1/j. In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have k=1p-1(Hk)/(k2k)7/24pBp-3(modp²), k=1p-1(Hk,2)/(k2k)-3/8Bp-3(modp), and k=1p-1(H²k,2n)/(k2n)(6n+12n-1+n)/(6n+1)pBp-1-6n(modp²) for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and Hk,m:=j=1k1/(jm).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283502
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7,
     author = {Zhi-Wei Sun and Li-Lu Zhao},
     title = {Arithmetic theory of harmonic numbers (II)},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {67-78},
     zbl = {1290.11052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7}
}
Zhi-Wei Sun; Li-Lu Zhao. Arithmetic theory of harmonic numbers (II). Colloquium Mathematicae, Tome 131 (2013) pp. 67-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-7/