A complete characterization of bounded and unbounded norm hermitian operators on is given for the case when E is a complex Banach space with trivial multiplier algebra. As a consequence, the bi-circular projections on are determined. We also characterize a subclass of hermitian operators on for a complex Hilbert space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5,
author = {James Jamison},
title = {Hermitian operators on $H^{$\infty$}\_E$ and $S^{$\infty$}\_{}$
},
journal = {Colloquium Mathematicae},
volume = {131},
year = {2013},
pages = {51-59},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5}
}
James Jamison. Hermitian operators on $H^{∞}_E$ and $S^{∞}_{}$
. Colloquium Mathematicae, Tome 131 (2013) pp. 51-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5/