Hermitian operators on HE and S
James Jamison
Colloquium Mathematicae, Tome 131 (2013), p. 51-59 / Harvested from The Polish Digital Mathematics Library

A complete characterization of bounded and unbounded norm hermitian operators on HE is given for the case when E is a complex Banach space with trivial multiplier algebra. As a consequence, the bi-circular projections on HE are determined. We also characterize a subclass of hermitian operators on S for a complex Hilbert space.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283790
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5,
     author = {James Jamison},
     title = {Hermitian operators on $H^{$\infty$}\_E$ and $S^{$\infty$}\_{}$
            },
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {51-59},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5}
}
James Jamison. Hermitian operators on $H^{∞}_E$ and $S^{∞}_{}$
            . Colloquium Mathematicae, Tome 131 (2013) pp. 51-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-5/