Exact Kronecker constants of Hadamard sets
Kathryn E. Hare ; L. Thomas Ramsey
Colloquium Mathematicae, Tome 131 (2013), p. 39-49 / Harvested from The Polish Digital Mathematics Library

A set S of integers is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number α(S) ∈ [0,1/2] such that κ(S) = |exp(2πiα(S)) - 1|. We show that for integers m > 1 and d ≥ 1, α1,m,...,md-1=(md-1-1)/(2(md-1)) and α1,m,m²,... = 1/(2m).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283752
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4,
     author = {Kathryn E. Hare and L. Thomas Ramsey},
     title = {Exact Kronecker constants of Hadamard sets},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {39-49},
     zbl = {1275.42003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4}
}
Kathryn E. Hare; L. Thomas Ramsey. Exact Kronecker constants of Hadamard sets. Colloquium Mathematicae, Tome 131 (2013) pp. 39-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4/