A set S of integers is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number α(S) ∈ [0,1/2] such that κ(S) = |exp(2πiα(S)) - 1|. We show that for integers m > 1 and d ≥ 1, and α1,m,m²,... = 1/(2m).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4, author = {Kathryn E. Hare and L. Thomas Ramsey}, title = {Exact Kronecker constants of Hadamard sets}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {39-49}, zbl = {1275.42003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4} }
Kathryn E. Hare; L. Thomas Ramsey. Exact Kronecker constants of Hadamard sets. Colloquium Mathematicae, Tome 131 (2013) pp. 39-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-4/