Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra
Edmond E. Granirer
Colloquium Mathematicae, Tome 131 (2013), p. 19-26 / Harvested from The Polish Digital Mathematics Library

It is shown that if G is a weakly amenable unimodular group then the Banach algebra Apr(G)=ApLr(G), where Ap(G) is the Figà-Talamanca-Herz Banach algebra of G, is a dual Banach space with the Radon-Nikodym property if 1 ≤ r ≤ max(p,p’). This does not hold if p = 2 and r > 2.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:284239
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2,
     author = {Edmond E. Granirer},
     title = {Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {19-26},
     zbl = {1273.43002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2}
}
Edmond E. Granirer. Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra. Colloquium Mathematicae, Tome 131 (2013) pp. 19-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2/