It is shown that if G is a weakly amenable unimodular group then the Banach algebra , where is the Figà-Talamanca-Herz Banach algebra of G, is a dual Banach space with the Radon-Nikodym property if 1 ≤ r ≤ max(p,p’). This does not hold if p = 2 and r > 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2, author = {Edmond E. Granirer}, title = {Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {19-26}, zbl = {1273.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2} }
Edmond E. Granirer. Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra. Colloquium Mathematicae, Tome 131 (2013) pp. 19-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-2/