We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10,
author = {Adam Os\k ekowski},
title = {Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers},
journal = {Colloquium Mathematicae},
volume = {131},
year = {2013},
pages = {103-126},
zbl = {1275.42018},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10}
}
Adam Osękowski. Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers. Colloquium Mathematicae, Tome 131 (2013) pp. 103-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10/