Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers
Adam Osękowski
Colloquium Mathematicae, Tome 131 (2013), p. 103-126 / Harvested from The Polish Digital Mathematics Library

We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on d.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283534
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10,
     author = {Adam Os\k ekowski},
     title = {Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers},
     journal = {Colloquium Mathematicae},
     volume = {131},
     year = {2013},
     pages = {103-126},
     zbl = {1275.42018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10}
}
Adam Osękowski. Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers. Colloquium Mathematicae, Tome 131 (2013) pp. 103-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10/