We study logarithmic estimates for a class of Fourier multipliers which arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this leads to corresponding tight bounds for second-order Riesz transforms on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10, author = {Adam Os\k ekowski}, title = {Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers}, journal = {Colloquium Mathematicae}, volume = {131}, year = {2013}, pages = {103-126}, zbl = {1275.42018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10} }
Adam Osękowski. Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers. Colloquium Mathematicae, Tome 131 (2013) pp. 103-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm130-1-10/