Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic
Leonid F. Barannyk ; Dariusz Klein
Colloquium Mathematicae, Tome 126 (2012), p. 173-187 / Harvested from The Polish Digital Mathematics Library

Let S be a commutative complete discrete valuation domain of positive characteristic p, S* the unit group of S, Ω a subgroup of S* and G=Gp×B a finite group, where Gp is a p-group and B is a p’-group. Denote by SλG the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). For Ω satisfying a specific condition, we give necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,Ω) such that every indecomposable SλG-module is isomorphic to the outer tensor product V W of an indecomposable SλGp-module V and an irreducible SλB-module W.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284058
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-2-2,
     author = {Leonid F. Barannyk and Dariusz Klein},
     title = {Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {173-187},
     zbl = {1273.16026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-2-2}
}
Leonid F. Barannyk; Dariusz Klein. Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic. Colloquium Mathematicae, Tome 126 (2012) pp. 173-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-2-2/