Potential theory of one-dimensional geometric stable processes
Tomasz Grzywny ; Michał Ryznar
Colloquium Mathematicae, Tome 126 (2012), p. 7-40 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to find optimal estimates for the Green function and the Poisson kernel for a half-line and intervals of the geometric stable process with parameter α ∈ (0,2]. This process has an infinitesimal generator of the form -log(1+(-Δ)α/2). As an application we prove the global scale invariant Harnack inequality as well as the boundary Harnack principle.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283793
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2,
     author = {Tomasz Grzywny and Micha\l\ Ryznar},
     title = {Potential theory of one-dimensional geometric stable processes},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {7-40},
     zbl = {1276.60083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2}
}
Tomasz Grzywny; Michał Ryznar. Potential theory of one-dimensional geometric stable processes. Colloquium Mathematicae, Tome 126 (2012) pp. 7-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2/