The purpose of this paper is to find optimal estimates for the Green function and the Poisson kernel for a half-line and intervals of the geometric stable process with parameter α ∈ (0,2]. This process has an infinitesimal generator of the form . As an application we prove the global scale invariant Harnack inequality as well as the boundary Harnack principle.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2, author = {Tomasz Grzywny and Micha\l\ Ryznar}, title = {Potential theory of one-dimensional geometric stable processes}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {7-40}, zbl = {1276.60083}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2} }
Tomasz Grzywny; Michał Ryznar. Potential theory of one-dimensional geometric stable processes. Colloquium Mathematicae, Tome 126 (2012) pp. 7-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-2/