It was proved by Kadets that a weak*-continuous function on [0,1] taking values in the dual of a Banach space X is Riemann-integrable precisely when X is finite-dimensional. In this note, we prove a Fréchet-space analogue of this result by showing that the Riemann integrability holds exactly when the underlying Fréchet space is Montel.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1, author = {M. A. Sofi}, title = {Weaker forms of continuity and vector-valued Riemann integration}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {1-6}, zbl = {1267.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1} }
M. A. Sofi. Weaker forms of continuity and vector-valued Riemann integration. Colloquium Mathematicae, Tome 126 (2012) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1/