Weaker forms of continuity and vector-valued Riemann integration
M. A. Sofi
Colloquium Mathematicae, Tome 126 (2012), p. 1-6 / Harvested from The Polish Digital Mathematics Library

It was proved by Kadets that a weak*-continuous function on [0,1] taking values in the dual of a Banach space X is Riemann-integrable precisely when X is finite-dimensional. In this note, we prove a Fréchet-space analogue of this result by showing that the Riemann integrability holds exactly when the underlying Fréchet space is Montel.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:286314
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1,
     author = {M. A. Sofi},
     title = {Weaker forms of continuity and vector-valued Riemann integration},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {1-6},
     zbl = {1267.46006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1}
}
M. A. Sofi. Weaker forms of continuity and vector-valued Riemann integration. Colloquium Mathematicae, Tome 126 (2012) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm129-1-1/