Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9, author = {Art\=uras Dubickas}, title = {Density of some sequences modulo 1}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {237-244}, zbl = {1316.11066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9} }
Artūras Dubickas. Density of some sequences modulo 1. Colloquium Mathematicae, Tome 126 (2012) pp. 237-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9/