Density of some sequences modulo 1
Artūras Dubickas
Colloquium Mathematicae, Tome 126 (2012), p. 237-244 / Harvested from The Polish Digital Mathematics Library

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a/nn=1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length cN-0.475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283548
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9,
     author = {Art\=uras Dubickas},
     title = {Density of some sequences modulo 1},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {237-244},
     zbl = {1316.11066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9}
}
Artūras Dubickas. Density of some sequences modulo 1. Colloquium Mathematicae, Tome 126 (2012) pp. 237-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-9/