Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if and for some non-negative integer r, then the Diophantine equation has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6,
author = {Yasutsugu Fujita and Takafumi Miyazaki},
title = {Je\'smanowicz' conjecture with congruence relations},
journal = {Colloquium Mathematicae},
volume = {126},
year = {2012},
pages = {211-222},
zbl = {1291.11071},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6}
}
Yasutsugu Fujita; Takafumi Miyazaki. Jeśmanowicz' conjecture with congruence relations. Colloquium Mathematicae, Tome 126 (2012) pp. 211-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6/