Jeśmanowicz' conjecture with congruence relations
Yasutsugu Fujita ; Takafumi Miyazaki
Colloquium Mathematicae, Tome 126 (2012), p. 211-222 / Harvested from The Polish Digital Mathematics Library

Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if b0(mod2r) and b±2r(moda) for some non-negative integer r, then the Diophantine equation ax+by=cz has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:284026
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6,
     author = {Yasutsugu Fujita and Takafumi Miyazaki},
     title = {Je\'smanowicz' conjecture with congruence relations},
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {211-222},
     zbl = {1291.11071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6}
}
Yasutsugu Fujita; Takafumi Miyazaki. Jeśmanowicz' conjecture with congruence relations. Colloquium Mathematicae, Tome 126 (2012) pp. 211-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6/