Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if and for some non-negative integer r, then the Diophantine equation has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6, author = {Yasutsugu Fujita and Takafumi Miyazaki}, title = {Je\'smanowicz' conjecture with congruence relations}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {211-222}, zbl = {1291.11071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6} }
Yasutsugu Fujita; Takafumi Miyazaki. Jeśmanowicz' conjecture with congruence relations. Colloquium Mathematicae, Tome 126 (2012) pp. 211-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-6/