Some remarks on universality properties of /c
Mikołaj Krupski ; Witold Marciszewski
Colloquium Mathematicae, Tome 126 (2012), p. 187-195 / Harvested from The Polish Digital Mathematics Library

We prove that if is not a Kunen cardinal, then there is a uniform Eberlein compact space K such that the Banach space C(K) does not embed isometrically into /c. We prove a similar result for isomorphic embeddings. Our arguments are minor modifications of the proofs of analogous results for Corson compacta obtained by S. Todorčević. We also construct a consistent example of a uniform Eberlein compactum whose space of continuous functions embeds isomorphically into /c, but fails to embed isometrically. As far as we know it is the first example of this kind.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283939
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-4,
     author = {Miko\l aj Krupski and Witold Marciszewski},
     title = {Some remarks on universality properties of $l\_[?]/c0$
            },
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {187-195},
     zbl = {1267.46031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-4}
}
Mikołaj Krupski; Witold Marciszewski. Some remarks on universality properties of $ℓ_∞/c₀$
            . Colloquium Mathematicae, Tome 126 (2012) pp. 187-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-4/