On the diophantine equation xy-yx=cz
Zhongfeng Zhang ; Jiagui Luo ; Pingzhi Yuan
Colloquium Mathematicae, Tome 126 (2012), p. 277-285 / Harvested from The Polish Digital Mathematics Library

Applying results on linear forms in p-adic logarithms, we prove that if (x,y,z) is a positive integer solution to the equation xy-yx=cz with gcd(x,y) = 1 then (x,y,z) = (2,1,k), (3,2,k), k ≥ 1 if c = 1, and either (x,y,z)=(ck+1,1,k), k ≥ 1 or 2x<ymax1.5×1010,c if c ≥ 2.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283734
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-13,
     author = {Zhongfeng Zhang and Jiagui Luo and Pingzhi Yuan},
     title = {On the diophantine equation $x^y - y^x = c^z$
            },
     journal = {Colloquium Mathematicae},
     volume = {126},
     year = {2012},
     pages = {277-285},
     zbl = {1297.11017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-13}
}
Zhongfeng Zhang; Jiagui Luo; Pingzhi Yuan. On the diophantine equation $x^y - y^x = c^z$
            . Colloquium Mathematicae, Tome 126 (2012) pp. 277-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-13/