We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to πα, α ∈ [1,2].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10,
author = {Bappaditya Bhowmik and Karl-Joachim Wirths},
title = {A sharp bound for the Schwarzian derivative of concave functions},
journal = {Colloquium Mathematicae},
volume = {126},
year = {2012},
pages = {245-251},
zbl = {1267.30035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10}
}
Bappaditya Bhowmik; Karl-Joachim Wirths. A sharp bound for the Schwarzian derivative of concave functions. Colloquium Mathematicae, Tome 126 (2012) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10/