We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to πα, α ∈ [1,2].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10, author = {Bappaditya Bhowmik and Karl-Joachim Wirths}, title = {A sharp bound for the Schwarzian derivative of concave functions}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {245-251}, zbl = {1267.30035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10} }
Bappaditya Bhowmik; Karl-Joachim Wirths. A sharp bound for the Schwarzian derivative of concave functions. Colloquium Mathematicae, Tome 126 (2012) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-2-10/