We prove that, for any Hausdorff continuum X, if dim X ≥ 2 then the hyperspace C(X) of subcontinua of X is not a C-space; if dim X = 1 and X is hereditarily indecomposable then either dim C(X) = 2 or C(X) is not a C-space. This generalizes some results known for metric continua.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-9, author = {Wojciech Stadnicki}, title = {The dimension of hyperspaces of non-metrizable continua}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {101-107}, zbl = {1267.54032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-9} }
Wojciech Stadnicki. The dimension of hyperspaces of non-metrizable continua. Colloquium Mathematicae, Tome 126 (2012) pp. 101-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-9/