The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that is the generating distribution of an i.d.c.s. if and only if the operator on satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-6, title = {One-parameter semigroups in the convolution algebra of rapidly decreasing distributions}, journal = {Colloquium Mathematicae}, volume = {126}, year = {2012}, pages = {49-68}, zbl = {1272.46036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-6} }
(éd.). One-parameter semigroups in the convolution algebra of rapidly decreasing distributions. Colloquium Mathematicae, Tome 126 (2012) pp. 49-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-cm128-1-6/